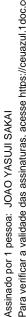
Para verificar a validade das assinaturas, acesse https://ceuazul.1doc.com.br/verificacao/453C-EB0E-239B-B7CB e informe o código 453C-EB0E-239B-B7CB


MUNICÍPIO DE CÉU AZUL

Estado do Paraná

Av. Nilo Umberto Deitos nº 1426 - Centro - CEP 85840-000 CNPJ 76.206.473/0001-01 // Fone: (45) 3121-1000 // E-mail: licitacao@ceuazul.pr.gov.br

DIMENSIONAMENTO DE BASE E PAVIMENTO

CÉU AZUL - 2022

SUMÁRIO

1.	LEVANTAMENTOS PRÉVIOS	
2	DIMENSIONAMENTO DE BASE PARA PAVIMENTO EM TST	

Assinado por 1 pessoa: JOAO YASUJI SAKAI Para verificar a validade das assinaturas, acesse https://ceuazul.1doc.com.br/verificacao/453C-EB0E-239B-B7CB e informe o código 453C-EB0E-239B-B7CB

LOCAL: ESTRADA RURAL MUNICIPAL DA LINHA DA COMUNIDADE DO CANTINHO DO CÉU (Ver coordenadas do ponto de início e final da pavimentação e o mapa)

1. LEVANTAMENTOS PRÉVIOS

Estudo geotécnico

O Estudo Geotécnico objetivou o detalhamento das condições do subleito, visando à caracterização qualitativa e quantitativa das condicionantes e problemas geotécnicos existentes, para fins de dimensionamento do pavimento. Para o estudo geotécnico do presente trecho, foi previsto coleta de amostra para ensaios laboratoriais de caracterização e compactação com determinação do ISC.

Metodologia

A metodologia empregada no desenvolvimento dos Estudos Geotécnicos constou das seguintes etapas de trabalho:

- Inspeção de campo;
- Reconhecimento das fontes de materiais locais;
- Elaboração de programação de sondagem;
- Execução de sondagens, coletas de amostras e ensaios "in situ";
- Execução dos ensaios de laboratório, com as amostras coletadas do subleito.

Estudos do Subleito

As amostras coletadas foram processadas no laboratório, tendo sido executados ensaios de granulometria por peneiramento, limite de liquidez, limite de plasticidade, compactação, expansão, I.S.C e CBR. Foram realizados os seguintes ensaios:

- Análise granulométrica simples;
- Curva granulométrica;
- Limite de Plasticidade e Liquidez;
- Ensaio de compactação;
- Ensaio de expansibilidade;
- Ensaio de ISC.

2. DIMENSIONAMENTO DE PAVIMENTO

O projeto de pavimento foi desenvolvido de acordo com os resultados dos ensaios de solo realizados em amostras coletadas *in situ*, com dimensionamento das camadas realizado através do método do D.N.E.R, que se baseia no valor do C.B.R. do solo e parâmetros de tráfego para determinação das espessuras das camadas do pavimento.

O método tem como base o trabalho "Desing of Flexible Paviments Considering Mixed Loads and Traffic Volume" da autoria de W.J. Turnbull, C.R. Foster e R.G. Ahlvin, do Corpo de Engenheiros do Exército os E.E.U.U. e conclusões obtidas na Pista experimental a AASHTO.

Relativamente aos materiais integrantes do pavimento, são adotados coeficientes de equivalência estrutural tomando por base os resultados obtidos na Pista Experimental da AASHTO, com modificações julgadas oportunas.

As recomendações para a composição do pavimento são:

- Os materiais do subleito devem apresentar uma expansão, medida no ensaio C.B.R., menor ou igual a 2% e um C.B.R. ≥ 2%;
- Materiais para reforço do subleito, os que apresentam C.B.R. maior que o do subleito e expansão ≤1%;
- Materiais para sub-base, os que apresentam C.B.R. ≥ 20%, I.G. = 0 e expansão ≤ 1%;
- Materiais para base, os que apresentam: C.B.R. ≥ 80% e expansão ≤ 0,5%. Limite de liquidez ≤ 25% e Índice de plasticidade ≤ 6%;
- Para os materiais para base granular a fração que passa na peneira nº 200 deve ser inferior a 2/3 da fração que passa na peneira nº 40. A fração graúda deve apresentar um desgaste Los Angeles igual ou inferior a 50;
- No caso de ocorrência de materiais com C.B.R. ou I.S. inferior a 2 é recomendado fazer a substituição do material por um de maior resistência, na espessura de pelo menos 1,00 m;
- As espessuras máximas e mínimas de compactação das camadas granulares são de 20,00 cm e 10,00 cm, respectivamente;

 A espessura construtiva mínima para as camadas da base e da sub-base respectivamente, é de 15,00 cm (para a cada camada) conforme o manual de Pavimentação do DNIT (2006).

Coeficientes de equivalência estrutural - k

Os coeficientes de equivalência estrutural considerados para cada camada do pavimento, de acordo com o tipo de material empregado, são indicados na Tabela 01.

Tabela 01 - Coeficiente de Equivalência Estrutural.

COMPONENTES DO PAVIMENTO	COEFICIENTE K
Base ou revestimento de concreto asfáltico	2,00
Base ou revestimento pré-misturado a quente, de graduação densa	1,70
Base ou revestimento pré-misturado a frio, de graduação densa	1,40
Base ou revestimento asfáltico por penetração	1,20
CAMADAS GRANULARES	1,00
Solo cimento com resistência à compressão a 7 dias, superior a 45 kg/cm	1,70
ldem, com resistência à compressão a 7 dias, entre 45 kg/cm e 28 kg/cm	1,40
Idem, com resistência à compressão a 7 dias, entre 28 kg/cm e 21 kg/cm	1,20

Estudo de Tráfego

Os pavimentos são dimensionados para um período de tempo "P" em anos, considerando o tráfego inicial e previsão do tráfego final. O tráfego vai aumentando com o passar do tempo e para isto é previsto um crescimento de tráfego, que pode ser em progressão aritmética ou geométrica.

Para o projeto em questão foi adotado um período de projeto de 5 anos e uma taxa de crescimento linear de 2,5%.

Número N

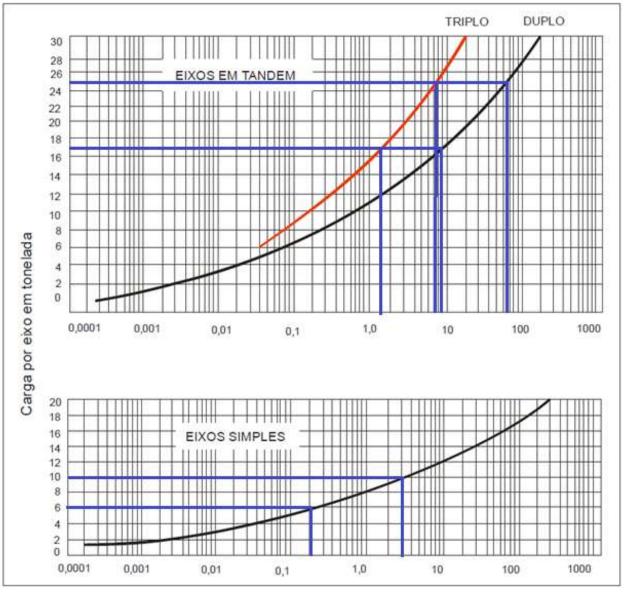
O número "N" é um parâmetro para o dimensionamento do pavimento flexível e é definido pelo número de repetições de um eixo-padrão de 8,2 t (18.000 lb ou 80 kN), durante o período de vida útil definido em projeto.

Para determinar o número N é necessário se conhecer o tráfego de veículos, volume médio diário de tráfego, período de vida útil, fatores de veículo e climáticos.

De acordo com a classificação do método da Prefeitura de São Paulo e com a planilha de contagem de trafego, temos as seguintes características para o trecho em questão:

Tabela 02 –	Contagem of	de Veículos.
-------------	-------------	--------------

TIPO	EIXOS	REFERÊCIA	QUANTIDADE
	II	ESRS - ESRS	25
	II	ESRS - ESRS	4
	II	ESRS - ESRS	ē.
	II	ESRS - ESRD	ä
	(I) I	ESRS - ESRS	1
	III	ESRS - ESRD	2
	I II	ESRS - ETD	×
8	II II	ESRS - ESRS - ETD	8
	I#I II	ESRS - ESRD - ETD	6
<u>∞</u> ∞	I III	ESRS - ETD - ETT	î
•		ESRS - ETD - ESRD - ETD	6


Legenda:

- ESRS Eixo Simples Roda Simples 6 Toneladas
- ESRD Eixo Simples Roda Dupla 10 Toneladas
- ETD Eixo TANDEM Duplo 17 Toneladas
- ETT Eixo TANDEM Triplo 25,5 Toneladas

Parâmetros de Tráfego

Utilizando a contagem quantitativa e classificatória dos veículos que utilizam a via, adotou-se a classificação em tráfego leve para projeção futura de tráfego na via.

Para se obter o Fator de Veículos (F.V.) utilizamos o método do DNER, onde se utiliza do gráfico abaixo para se ter o valor de Fator Equivalente de Operação para cada tipo de veículo e sua tonelada.

Fonte: Manual de Pavimentação do DNIT (2006).

Tabela 03 – Fator Equivalente de Operação.

TIPO DE VEÍCULO	FATOR EQUIVALENTE DE OPERAÇÃO		CONTAGEM SENTIDO > Nº DE VEÍCULOS (QUANTIDADE)	PORCENTAGEM	FATOR DE VEÍCULO (F.V)		
	ESRS	ESRD	ETD	ETT			\$
2 ESRS	0.50				30	90.91	0.45 d
1 ESRS + 1 ESRD	0.25	3.00			2	6.06	0.20
1 ESRS + 1ETD	0.25		9.50		0	0.00	0.00
2 ESRS + 1 ETD	0.50		9.50		0	0.00	0.00 ₫
1 ESRS + 1 ESRD + 1 ETD	0.25	3.00	9.50		0	0.00	0.00
1 ESRS + 1ETD + 1 ETT	0.25		9.50	7.50	1	3.03	0.00
1 ESRS + 2 ETD + 1 ESRD	0.50	3.00	19.00		0	0.00	0.00
TOTAL				•	33	100%	1.17

Fator Climático Regional

Tabela 04 – Fator de Clima.

ÍNDICE PLUVIOMÉTRICO ANUAL (mm)	FATOR CLIMÁTICO REGIONAL (FR)
Até 800	0,7
De 800 a 1.500	1,4
Mais que 1.500	1,8

O **índice pluviométrico** do município de Céu Azul - PR é de 2.155mm/ano **Cálculo do Número "N"**

$$N = 365 \cdot VDM \cdot P \cdot FV \cdot FR \cdot FD$$

Onde:

- VDM = Volume Diário Médio (Nº de veículos) Estimado estatisticamente.
- P = Período do Projeto (vida útil, em anos, projetado para a via).
- FV = Fator de Veículos.
- FR = Fator Regional ou Climático.
- FD = Fator Directional (50%).

$$N = 365 . 33 . 5 . 1,17. 1,8 . 0,50$$

 $N = 1,27 \times 10^{5}$

A taxa de crescimento para o período de projeto foi de 2,5% ao ano em progressão aritmética, conforme a fórmula abaixo:

$$I = [2+((p-1)tx/100)] / 2$$

Onde:

- I = índice multiplicativo da taxa
- p = período em anos
- tx = taxa de crescimento (2,5% ao ano)

$$I = [2+((10-1)2,5/00)]/2$$

Assim temos o valor do número "N" = 2,16 x 10⁵

Espessura Mínima de Revestimento Asfáltico

Em função do número N calculado a espessura mínima para o revestimento do pavimento será de 3,50cm, conforme parâmetros apresentados na Tabela 05 e 06.

Tabela 05 – Espessura Mínima de Revestimento Asfáltico.

NÚMERO N	ESPESSURA MÍNIMA DE REVESTIMENTO ASFÁLTICO		
N ≤ 10 ⁶	Tratamentos superficiais asfáltico		
$10^6 < N \le 5x10^6$	Concreto asfáltico com 5,00cm de espessura		
$5x10^6 < N \le 10^7$	Concreto asfáltico com 7,50cm de espessura		
$10^7 < N \le 5x10^7$	Concreto asfáltico com 10,00cm de espessura		
N > 5x10 ⁷	Concreto asfáltico com 12,50cm de espessura		

Fonte: Manual de Pavimentação do DNIT (2006).

Tabela 06 – Espessura Mínima para Revestimento Superficial.

TIPO	DESCRIÇÃO	ESPESSURA MÍNIMA DE TRATAMENTO.	ESPESSURA MÍNIMA DE CAPA SELANTE	ESPESSURA MÍNIMA (cm)
TSS	Tratamento Sup. Simples	1	0.5	1.5
TSD	Tratamento Sup. Duplo	2	0.5	2.5
TST	Tratamento Sup. Triplo	3	0.5	3.5

O CBR – California Bearing Ratio / Índice de Suporte Califórnia – adotado tem como valor de 30%. Esse valor é proveniente de ensaios realizados e arquivados n o Município anteriormente em outras localidades. E essa decisão também é definida pois o trecho a ser pavimentado já é consolidado e apresenta um nível de estabilidade e compacidade elevado.

Para o dimensionamento da altura total do pavimento será utilizado como capacidade do solo o CBR 30% e não 20% conforme indicado pelo método.

$$\begin{aligned} H_t &= 77,67 \text{ x } N^{0,0482} \text{ x } CBR^{\text{-}0,598} \\ H_t &= 77,67 \text{ x } (2,16\text{x}10^5)^{0,0482} \text{ x } 30^{\text{-}0,598} \\ H_t &= 18,36\text{cm} \\ H_t &= 18,50\text{cm} \end{aligned}$$

A camada total do pavimento fica estipulada inicialmente com 18,50cm. Para a espessura da base:

R x K_r + B x K_b
$$\geq$$
 H_t
3,5 x 1,2 + B x 1,0 \geq 18,50
B = 14,3cm
B = 15cm

Através dessa análise, verifica-se que não é necessária a execução de reforço do subleito.

Portanto, para o projeto, fica definida uma base de brita graduada com 15cm de espessura e para tratamento superficial betuminoso de 3,5cm totalizando 18,5cm.

Tabela 07 – Quadro Resumo da Estrutura do Pavimento.

CAMADAS DO PAVIMENTO	ESPESSURA ADOTADA (cm)	MATERIAL
Revestimento	3,50	TST
Base	15,00	Brita Graduada

Céu Azul-PR, 03 de setembro de 2022.

PREFEITURA MUNICIPAL DE CÉU AZUL

CNPJ: 76.206.743/0001-01 JOÃO YASUJI SAKAI ENGº CIVIL CREA 21735/D/Pr

VERIFICAÇÃO DAS ASSINATURAS

Código para verificação: 453C-EB0E-239B-B7CB

Este documento foi assinado digitalmente pelos seguintes signatários nas datas indicadas:

V

JOAO YASUJI SAKAI (CPF 557.XXX.XXX-20) em 03/10/2022 14:50:14 (GMT-03:00)

Papel: Assinante

Emitido por: Sub-Autoridade Certificadora 1Doc (Assinatura 1Doc)

Para verificar a validade das assinaturas, acesse a Central de Verificação por meio do link:

https://ceuazul.1doc.com.br/verificacao/453C-EB0E-239B-B7CB